


Biochemical Engineering

Exercise Session 7

1) Chemostat Theory

Draw a x-D diagram with consideration of maintenance energy and insert, biomass, volumetric productivity, specific productivity, residual glucose concentration s , D_{opt} and D_{crit} .

What do you understand under a turbidostat and a pH auxostat?
What are their differences to a chemostat?

2) Substrate conversion and biomass productivity

A 5 m³ fermenter is operated continuously with a feed substrate concentration of 20 kg m⁻³. The genetically engineered *E. coli* cultivated in the reactor has the following characteristics:

$$\mu_{max} = 0.45 \text{ h}^{-1}; K_s = 800 \text{ g m}^{-3}; Y_{X/S} = 0.55 \text{ kg kg}^{-1}$$

- What feed flow rate is required to achieve 90% substrate conversion?
- How does the biomass productivity at 90% substrate conversion compare with the maximum possible?
- What is the biomass concentration in case a) and at the optimal dilution rate?

3) Growth inhibition

The specific growth rate for inhibited growth in a chemostat is given by the following equation:

$$\mu = \mu_{\max} S / (K_s + S + I K_s / K_i)$$

Where

$$S_0 = 10 \text{ g L}^{-1}, K_s = 1 \text{ g L}^{-1}; I = 0.05 \text{ g L}^{-1}, Y_{xs} = 0.1 \text{ g g}^{-1}$$

$$X_0 = 0, K_i = 0.01 \text{ g L}^{-1}, \mu_{\max} = 0.5 \text{ h}^{-1}$$

- a) Determine x and s as function of D when I = 0.
- b) With inhibitor added to a chemostat, determine the effluent substrate concentration and x as function of D.
- c) Determine the volumetric cell productivity, DX, as a function of dilution rate.

4) Wash-out experiment

What is the biomass concentration in a chemostat when one knows the following parameters:

$$V = 2.2 \text{ L} \quad F = 200 \text{ mL/h}$$

$$S_0 = 10 \text{ g glucose/L} \quad \mu_{\max} = 0.3 \text{ h}^{-1}$$

$$K_s = 0.2 \text{ g glucose/L} \quad Y_{X/S} = 0.5 \text{ g cells / g glucose}$$

(consider not metabolized glucose s!)

What is the concentration of the biomass at different times when the dilution rate was changed to $D = 1.0 \text{ h}^{-1}$? Fill in the table below.

Time [h]	Biomass concentration [mg L^{-1}] (3 digits after the comma !)
1	
5	
15	
25	